ST-Hash: An Efficient Spatiotemporal Index for
Massive Trajectory Data in a NoSQL Database

Xuefeng Guan '*, Cheng Bo!, Zhenqgiang Li!, Yaojin Yu!

! State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing,
Wuhan University, 129 Luoyu Road, Wuhan 430079, China
*Corresponding author, e-mail:_guanxuefeng@whu.edu.cn

Abstract—With the development of positioning technologies and
the increasing popularity of location-aware devices, large
volumes of trajectory data have been accumulated. However,
efficient management and access to massive trajectory data
remains a big challenge. The emerging NoSQL database has
provided a promising solution for this challenge. But most of the
current NoSQL databases do not support direct spatiotemporal
indexing of massive trajectory data. This paper presents a novel
trajectory indexing method to accelerate time-consuming
spatiotemporal queries of massive trajectory data. This method
extends the widely-used GeoHash algorithm to satisfy the
requirements for both high-frequent updates and common
trajectory query operations, e.g. exact point query and
spatiotemporal range query. This ST-Hash index was
implemented and evaluated in a NoSQL database (MongoDB).
Experimental results show that this proposed ST-Hash index can
greatly improve the query performance and exhibits robust
performance scalability over different input data sizes.

Keywords: ST-Hash; Spatiotemporal index; Spatiotemporal
range query; Trajectory data; NoSQL

I. INTRODUCTION

Currently, most mobile devices have positioning and
wireless communication capabilities. They can continuously
record device trajectories and dynamically report the locations
to a remote server [1, 2]. General trajectory data are the
traveling history of moving objects such as a person, a vehicle,
or a flight. They have typical spatiotemporal characteristics.
Each trajectory record usually contains 2D/3D coordinates, a
timestamp associated with it, and a sequence of features, such
as speed, direction, acceleration, temperature, etc. Trajectory
data have been used for complex analysis across different
domains, including environmental monitoring [1], traffic
management [3], satellite image analysis [4], and homeland
security.

With the pervasiveness of these geo-locating devices, the
volume of spatiotemporal data has increased not only in
quantities but also in scale. The large volume of trajectory data
exceeds the current computation capacity of traditional
centralized solutions. Efficient management and access to such
massive trajectory datasets remain big challenges. The
emerging cloud computing now provides a promising direction
to master the explosion of trajectory data. For example,
researchers and industry have begun to explore various NoSQL
databases that can provide high performance, availability, and
scalability [5]. However, many NoSQL databases lack a

This work is supported by the Natural Science Foundation of China
(Grant No.: 41301411) and the Natural Science Foundation of Hubei Province
(Grant No.: 2015CFB399).

specialized indexing mechanism for spatial or spatiotemporal
data, so NoSQL databases cannot support typical operations
such as neighborhood or range queries in both spatial and
temporal dimensions. Existing spatial indexes such as the R-
tree family can be easily extended as spatiotemporal indexes
where time is viewed as another dimension in addition to
spatial dimensions. However, R-tree family methods are too
complex to support concurrent operations in the NoSQL
databases, e.g. high-frequency status update of thousands of
floating cars [6].

In this paper, a novel indexing method called ST-Hash is
proposed and implemented in a typical NoSQL database,
MongoDB, to efficiently index and query massive trajectory
datasets. This indexing method extends the idea of GeoHash
and augments it with the temporal dimension. It encodes
latitude, longitude, and time into a short and unique string.
Different spatiotemporal queries are supported by these unique
hash strings. A Web-service-based query interface is also
designed to speed up the range query and facilitate client usage.
Experimental results show that the ST-Hash method provides
high query performance and exhibits robust performance
scalability over different data sizes.

The rest of the paper is organized as follows. In Section 2,
an overview of current spatial or spatiotemporal indexing
methods is presented. Section 3 introduces the fundamentals of
the ST-Hash indexing method, and describes how to transform
a spatiotemporal point (latitude, longitude and time) into a ST-
Hash string. In Section 4, two query procedures using ST-Hash
strings are introduced. In Section 5, the evaluation results about
query performance and scalability of this indexing method are
discussed. Finally, Section 6 gives conclusions and directions
for future research.

II. RELATED WORK

The management of massive trajectory data presents the
following typical challenges: a) mass data volume storage; b)
high-frequency inserting and updating operations; and c)
diverse types of trajectory queries. Generally moving objects
change their locations very frequently, accordingly the index of
trajectory data should be updated frequently. Thus, update
efficiency must be taken into consideration. At the same time,
it is quite common to index TB-size trajectory datasets, so
space utilization must also be considered in the index design.

Existing spatiotemporal indexes can be classified into three
categories. The first category uses any multi-dimensional

search tree method like R-tree indexes with augmentation in
the temporal dimension, e.g. 3D R-tree [6], or STR-tree [6].
This category can adaptively adjust index structures according
to the data distribution to produce better query performance,
but this adjustment degrades index generation performance [7].
The second category uses multi-version structures, including
MR-tree[1], HR-tree[2], HR+-tree[3], and MV3R-tree[4].This
approach builds an independent R-tree for each time interval
and usually indexes the temporal dimension with B-tree. This
type of index adopts a strategy that first considers the temporal
dimension and then deals with the spatial dimensions. It has the
advantage of high efficiency in temporal range queries. The
third category relies on space-partitioning, such as the B-tree
based indexes [5, 6] and grid based methods [7, 8]. Typical
examples of this type of spatiotemporal index include the SETI
[16] and MTSB-tree [17].

Another widely-used geo-encoding algorithm should also
be mentioned here, called Geohash. Geohash -effectively
defines an implicit, recursive quadtree over the world-wide
longitude-latitude rectangle and divides this geographic
rectangle into a hierarchical structure. The division continues
along the longitude and latitude directions alternately until the
desired resolution is achieved. During each division, if the
target coordinate value is greater than the division point, a ’1’
bit is appended to the overall set of bits; otherwise, a’0’ bit will
be appended. So each node of the recursive quadtree can
represent a fixed spatial bounding box. Finally, GeoHash uses
a 1D string to represent a 2D rectangle from a given quadtree
node. The GeoHash string is derived by interleaving bits
obtained from latitude and longitude pairs and then converting
the bits to a string using a Base32 character map. For example,
the point with coordinates of 45.557, 18.675 falls within the
GeoHash bounding box of "u2j70vx29gfu". GeoHash has been
widely implemented in many geographic information systems
(e.g. PostGIS), and also used as a spatial indexing method in
some NoSQL databases (e.g. MongoDB). GeoHash has some
remarkable characteristics:

1) Uniqueness: Each GeoHash string has a unique
corresponding rectangle on the earth surface, and vice versa.

2) Recursiveness: According to the GeoHash division rule,
grid cells at the lower level are split recursively from the cells
at the higher level. The grid cells in the same region but at
different levels have recursiveness, meaning a shorter string
represents a bigger space. Adding characters to the end of a
GeoHash string specifies a smaller rectangle that is contained
by the original one.

The GeoHash method can be treated as one of the space-
partitioning based indexes but does not consider the temporal
dimension. Indexes based on space partitioning surpass the
other two categories of indexing methods in two ways [18].
First, space-partitioning based indexes usually transform
multiple dimensions into one dimension. Currently, the 1D
indexing methods, e.g. B-tree, are very mature and have been
used in all commercial DBMSs. Thus, space-partitioning based
indexes can be easily integrated into an existing DBMS. No
additional work is required to modify the index structure,
concurrency controls or the query execution module in the
underlying DBMS. Second, GeoHash string generation only

needs spatial coordinates of each point and does not involve
other points. So when faced with high-frequency concurrent
operations, space-partitioning based indexes are far superior to
other spatial indexes, e.g. the R-tree family. The concurrency
controls in the R-tree family indexes are too complex and time
consuming, so they are not scalable for managing large
volumes of moving objects. Several research works have
shown the inefficiency of R-tree family in these circumstances.
Jensen, et al. [19] demonstrated that the throughput of the TPR-
tree [20] does not scale up in concurrent operations because R-
tree based indexes hold the locks longer during updates. Guo,
et al. [4] also confirmed that the preprocessing and tree
optimization strategies employed in the TPR*-tree [9] result in
extra locking delays due to preprocessing during insertions and
hence reduce the query performance gain.

III. THE INDEXING METHOD OF ST-HASH

A trajectory of a moving object is a polyline in the 3D
space, where two dimensions refer to geographic space and the
third dimension refers to time. It can be represented as a time-
stamped series of location points, denoted as {xi, y1, t; X2, V2,
by, ..., Xn, Vn, tn}; Where x and y represent the geographic
coordinates of the object, ¢ indicates the corresponding
timestamp of each position, and » is the total number of
elements in the series.

GeoHash has been employed as an efficient indexing
solution for massive 2D location data [8, 10]. But GeoHash
only encodes the information of latitude and longitude. Our
proposed ST-Hash method extends the idea of GeoHash, and it
includes the temporal dimension besides spatial dimensions.
The core of the ST-Hash method is the encoding process that
convert the items from the augmented 3D data structure into a
sequence of characters, i.e. 1D string. The complete process for
generating the ST-Hash string is shown in Figure 1.

Input the
spatiotemporal point

\
I N
Calculate the binary
code of each
dimension

~

Transform binary
code to string

i

Y
N

Interleave the binary

Y
| | Add the prefix of
codes year
~—

Figure 1. The flowchart of generating the ST-Hash string

Since the ST-Hash method defines a recursive octree on the
temporally augmented world-wide geographic space, the
maximum bounding box for this octree should be first
established. The ST-Hash uses the following spatial and
temporal extents:

Latitude and longitude: Since ST-Hash uses the WGS84 as
the spatial references coordinate systems, the scope of

longitude is [-180°, 180°] while the scope of latitude is [-90°,
90°].

Time: Time is infinite and endless, while the 2D space has
definite limits. Thus, a single year is divided in the ST-Hash
encoding. There are two kinds of a single year, common year
and leap year. The leap year contains 527040 minutes
(366 %24 X60) while the common year has 525600 minutes
(365%24%60). So the scope of a common year is [0, 525600],

and the scope of a leap year is [0, 527040].

A. The binary code of one trajectory point

Just like GeoHash, the proposed ST-Hash indexing method
divides the latitude, longitude and time respectively until the
desired spatiotemporal resolution is achieved. The derived
value in each dimension is transformed to a binary code.
Because the transformation principles of the
latitude/longitude/time are analogous, the longitude will be
used as an example to illustrate the dimensional division and
code transformation in the ST-Hash method, as shown in

Figure 2.
180 - 180) -40
0 1

0 : 180 0

0 1

|
(-10:9) ((s0:0) .

1

_ 0

(45: 25 (225:0)

Figure 2. The binary tree built by four divisions

In Figure 2, the longitude of one input point is -40° and the
division is carried out four times. As the total longitude scope
is [-180°, 180°], the longitude is split into two parts ([-180°, 0°]
and [0°, 180°]) in the first division. If the points belong to the
left part [-180°, 0°], then the points are marked as ‘0°, or
marked as ‘1’. Hence, -40° belongs to [-180°, 0°], so the first
binary bit is ‘0. In the second division, [-180°, 0°] is split into
[-180°, -90°] and [-90°, 0°]. Because -40° belongs to [-90°, 0°],
the second binary bit is ‘1°. The third and the forth divisions

continue in the same way. Thus, the final binary code is “0110”.

Since each child node has an extent equal to half of the
interval of the parent node, a more direct calculation is
formulated as the following. Given that the total scope in one
dimension is [Xyin, Xma] and the total height of the final binary
tree is 4, the resolution of the leaf node will be 7:

— max min (1)

If the input value is X; the decimal code C; can be
derived as:

¢, =| K=t | @

At last, Cy is transformed to a binary code C;.

In the above-mentioned example, if the longitude Xi is -40°,
Xnax=180°, X,,is=-180°, and & = 4. According to the Equation 1,
r=22.5°1is obtained. Through the Equation 2, the decimal code
Cy is equal to 6. Finally, C; can be transformed to the binary
code C, =0110.

This encoding process is applied to all three dimensions,
and yields three bit sequences, where the number of bits in
each corresponds to the number of levels in the tree. For
example, if the input data is (-140°, 20°, 2015-6-1 00:00:00)
and h is 10, then the input value of time ‘2015-6-1 00:00:00°
will be transformed into a decimal value, 217440. The three
derived bit sequences are:

longitude: 0001110001
latitude : 1001110001
time : 0110100111

Finally, the three binary codes of the input trajectory point
along the longitude, latitude, time dimensions are interleaved
into one long binary code. The three bit sequences in this
example are interleaved, and the complete binary code of the
given trajectory point is listed as the following:

010001 001 110111 110 000 001 001 111

B. The Base64 string of a trajectory point

The complete binary code of the given trajectory point is
too long and cannot be directly stored in the target database. So
the whole binary code is transformed to a Base64 string in a
binary-to-text encoding schema to make it more convenient for
database storage. During this encoding, six bits in the binary
code are grouped into a corresponding character according to
the Base64 map table. Thus the above-mentioned binary code
in the Section 3.1 is transformed to a string “Re+BP”, shown in
Figure 3. The detailed code-to-string transformation is
illustrated as follows.

Binary code : 010001 001110 111110 000 | L
Value : 17 30 62 1 15
String : R e + B P

Figure 3. The binary-code-to-string transformation process

If the length of the transformed string is / and the height of

binary tree is /%, then the relationship between the / and / will
be

h=2l 3)

The Equation 3 indicates that each character in the ST-Hash
string represents two levels in the octree. The resolution » of
the octree leaf node in one dimension is

Xmax) Xmin
p==_max_“min)

22]

If the spatiotemporal resolution » is known, the height / of
the octree is obtained through the Equation 5:

K = X) /7 2) -
In(4)

The string does not yet include the year information, so a
prefix representing the year is appended to the string. Since the
input data is (-140°, 20°, 2015-6-1 00:00:00), the prefix is
“2015-". Finally, the complete ST-Hash string is “2015-
Re+BP”

IV. THE QUERY INTERFACE FOR THE ST-HASH INDEX

The trajectory data and the generated ST-Hash strings are
stored in a target database, and a B-tree index is created on the
ST-Hash string field in advance. Both spatiotemporal point
query and range query are developed based on these ST-Hash
strings.

A. Spatiotemporal point query

The objective in a spatiotemporal point query is to find out
a trajectory point whose 3D coordinates match exactly the
input values along the longitude, latitude, and time dimensions.
Because each point record is tagged with an ST-Hash string,
the ST-Hash string is used to match point records. However,
different points might have the same ST-Hash string, so the
unrelated points should be filtered.

This point query process is described in Figure 4. If the
tuple values of the query point (longitude, latitude, time) are
given, the ST-Hash string of this point is generated. The
database can be queried to find out which point records in the
database match the generated ST-Hash string. Finally, the
qualified records are filtered to obtain points whose values are
exactly the same as the query point.

Compare points in the
query result with the input
values

Input the value query point

Cienerate the 8T-Hash
string of the query point

Do any points
cqual to the

- query point
Find the

records matched
the string

NO

End the query: Find
oul the matched
points

knd the query: could not
find the matched point

Figure 4. The flowchart of spatiotemporal point query

B. Spatiotemporal range query

The objective of a spatiotemporal range query can be stated
as: Given a spatial extent £, and a temporal extent £y, the query
Q (E,, Ey) returns all those trajectory points Si fully contained
by the spatiotemporal cube defined by Esand E..

O(E,E)) _>{Sk :(plapza"'apk)}

Just like GeoHash, it is convenient to execute exact point
query but inconvenient to execute spatiotemporal range queries
with an ST-Hash strings. Hence, an additional algorithm was
designed to support complex spatiotemporal range queries.
Since the ST-Hash indexing method defines a multi-level
octree, each node in this octree represents a cube in the
spatiotemporal space and can be labeled by a unique ST-Hash
string. The parent node at the upper level fully contains the
child nodes at the lower levels, so the ST-Hash string of the
parent node is derived by simply omitting the last character of a
given string. When conducting a spatiotemporal range query,
the client first inputs a spatiotemporal query filter defined by
{x1, ¥1, t1, X2, ¥2, t2}. This input filter also can be represented as
a cube in augmented 3D space; the filter cube is positioned by
the left lower corner Py (x;, yi, t/), and the right upper corner is
P2 (x2, y2, t2), illustrated in Figure 5.

As shown in Figure 5, the core of the spatiotemporal range
query can be simply depicted as the process to find a collection
of octree nodes whose combination fully contains the input
filter cube and then uses the ST-Hash strings of the found
octree nodes to filter the point records. The node search should
first determine the target octree level by matching the edge
length of input filter cube with the node resolution at the
different octree levels. Then the minimum containing node
cube can be found at the target octree level. The found
minimum containing node cube, however, might be much
bigger than the input filter cube; therefore, the query process
must be refined by intersecting its child nodes at the lower
second level with the input filter cube. The ST-Hash string
length at the lower second level node is exactly one character
longer than that of the found minimum containing node cube.
The number of the child nodes at the lower second level is 64,
so the intersection results could be two or more cubes, as
shown in Figure 5. Therefore this refinement step can narrow
down the number of query strings, filter out much unrelated
data more quickly and therefore accelerates query performance.

The found octree
node

64 children in the
lower 2 level

Intersect

>

Intersect

The intersection
results

The input filter
cube

N

Figure 5. The intersection between the input filter cube and the 64 children
nodes

The detailed range query process is listed as follows.

Step 1: Find the minimum octree node fully containing the
input filter cube.

a) Obtain the three edge lengths of the input filter cube;

b) Calculate the node resolution » in each dimension that
equals to the edge length, yielding 7o, 71 and riime;

c) Put 7in, 1w and ryye into the Equation 5, to get the
minimum octree level for each dimension (%ion, Aiat, Hiime).

d) Compare hion , Hiar , and hgme to get the minimum value
hmin ;

e) According to the eight corners of the filter cube,
determine the required minimum containing node.

f) From this minimum containing node, the 64 child nodes
in the lower 2 level are determined;

Step 2: Refine the collection of input query ST-Hash
strings.

a) Check the intersections between 64 child cubes and the
input filter cube to obtain the intersection results;

b) According to the intersection results, if the intersection
number is less than 64, generate all the ST-Hash strings for the
intersected child cubes; otherwise, if the intersection number
equals to 64, go up to the parent node to generate the ST-Hash
string for the parent node.

c) These generated ST-Hash strings in the step 2b are used
to query the database to obtain the coarse result set.

Step 3: Filter the unrelated points from the coarse result
set.

Based on the coordinates of the lower-left corner and the
upper-right corner, the intermediate coarse results are filtered
to obtain the final result set. All the points in the final result set
must satisfy the filtering conditions.

C. Spatiotemporal circle query

The spatiotemporal circle query is extended on
spatiotemporal range query in Section 4.2. The key point of
one spatiotemporal circle query is to convert the input circle in
the spatial dimension and the temporal range into an ST-Hash
string set. The given circle spatial region is (x, y, R) and the
given time range is (#;, £;), that x and y mean the latitude and
longitude of the center of the circle, while the R is the radius of
the circle. The detailed spatiotemporal circle query process is
listed as follows.

Step 1: The (x, y, R) is used to generate the MBR of the
spatial circle region. The lower left corner of the MBR is (x;, y;)
and the upper right corner is (x2, y2). x; is got from x;=x - R and
y1 is got y;/=y — R, while x; is got from x;=x + R and y; is got
yiI=y+R.

Step 2: The MBR, the given time range (#;, #;) can define
the filter cube described in Section 4.2. The filter cube is
positioned by the left lower corner P1 (x;, y,, ¢;), and the right
upper corner is P2 (xz, y2, t2), illustrated in Figure 5. This filter
cube will be used to conduct the spatio-temporal range query.
This step will generate the raw result.

Step 3: Filter the raw result. Each point in raw result, will
be calculate its distance d to the center of the circle. By the
time range and comparing d with R, the final result set can be
obtained.

D. The web-service-based query interface

During these three steps as described in Section 4.2, Step 2
and Step 3 are time consuming and I/O intensive. Since Web
services are becoming a standard method for sharing data and

functionality, a query web service is also implemented for
clients to execute the different queries in order to reduce the
query time, as illustrated in Figure 7. The user can use a
development tool such as Microsoft Visual Studio to create a
client application to access the query service.

First, the intersection results in the Step 2 can be a
collection of discrete ST-Hash strings derived from the refined
child octree nodes. The query service uses multi threads to
accelerate the query. This collection of ST-Hash strings is
spread among these independent threads to query the target
database concurrently. Second, there are many unrelated points
in the coarse results; these points must be removed. The query
service resides in the same server with the target database.
Therefore, shuffling the coarse results between the server and
clients can be avoided. This greatly reduces the data
transmission time and accelerates filtering.

‘Web Service

Query & Filter

Thread 1

Thread 2

13
=]
L5}
S
=1
=
=]
=.
=
c
g

Thread n MongoDB

SBULNG SB[- 1§ 100

Figure 6. The architecture of the web-service-based query interface

V. PERFORMANCE RESULTS AND DISCUSSIONS

To evaluate the effectiveness and performance of the ST-
Hash indexing method, two independent experiments were
carried out on massive floating car data stored in a NoSQL
database. MongoDB was chosen for the experiment because of
the availability of GeoHash spatial index in it (i.e. 2D location
index). One experiment was a query performance comparison
between different indexing methods. The other was a
scalability experiment to evaluate ST-Hash scalability over
different data sizes.

The dataset used in our experiments was a GPS trajectory
dataset collected for about two months from approximately
6,000+ electricity maintenance vehicles in the Fujian Province
of China. There were about 60 million trajectory records in
total; the data size was around 10GB. The data covered a swath
of 115.8494~120.6702 in longitude and 23.5161~28.3702 in
latitude. For the scalability experiment, the data was replicated
from 10 GB to 80 GB, the three coordinates of the replicated
records are slightly adjusted. The MongoDB database was
deployed in the single-node mode on a physical Linux server.
The server is equipped with one CPU (Intel Core 17-3770M
3.40 G), 8 GB RAM, and 1 TB hard disk (7200 rpm, 64MB
cache). The server’s operating system is CentOS 6.5 x86-64.

A. The storage schema of trajectory data in the MongoDB
database
The MongoDB is a cross-platform document-oriented
NoSQL database. In the MongoDB, a database holds a set of
collections, a collection holds a set of documents, and then a
document is a set of key-value pairs. In the following

experiments, the trajectory data were stored using only one
MongoDB collection. Each trajectory point is encapsulated into
one MongoDB document consisting of State-1D, latitude, time,
longitude, and other attributes (e.g., such as direction, speed).
The storage structure for trajectory data in the MongoDB
database was listed in Table 1. Shown from the Table 1, State-
ID is the primary key, which is composed of Taxi-ID and
timestamp. Furthermore, a B-tree index on the ST-Hash field
was created to accelerate the spatiotemporal query.

TABLE L. THE TABLE STRUCTURE OF TRAJECTORY DATA
Column Type Value
State-1D String Taxi-ID + Timestamp
TaxilD String Taxi-ID
STHash String ST-Hash string
Longitude Double Longitude
Latitude Double Latitude
Time Date Time
Attributes JSON Speed, Direction, ...

B. The performance comparison on the spatiotemporal
range queries

This experiment is a comparison of the spatiotemporal
range query performance of the ST-Hash index and a
composite index method. The composite method was realized
with two independent indexes: a 2D location index on the
Longitude and Latitude fields, and a B-tree index on the Time
field. The following four query cases were tested: the spatial
ranges were 0.01X0.01, 0.02<0.02, and 0.04X0.04, 0.08 X
0.08, respectively, and the time range were raised from 10
minutes to 120 minutes in each case. The experimental results
for different range queries in different scales are illustrated in
Figure 8.

) GeoHash+Time Index | s 80
ST-Hash i 1

s

GeoHash+ Tima Indax |

¢
3

LongitudexLattude: 0.01-0.01

on . Longitude=Latitude: 0.02-0.02

&

= |
E 00 =
]] o
e 400
: =
R I L
004
100
100 =
0 o1l .
b 5 2 1]] @ 60 120
Time Range (min) Tirne Range (rin)
80 [T GeoHash+ Time Index |
{ ST | -
i is.[a_!a_sr'___

%004
| LongiudesLatitude - 0.04:0.04 7 LongitudexLatiude: 0.08-0.08

g
3.8

Time Cost (ms)
]
Time Cost (ms)
g

49 o0 120

Time Range (min)

Time Range (min)

Figure 7. Time performance of different spatiotemporal range queries

Shown from Figure 8, the ST-Hash method performs much
better than the composite index method. When the query

ranges became larger, the returned query results also became
larger, but the ST-Hash query time rose very slowly. In each
case however, the query time of the composite index grew very
quickly. This phenomenon occurred because the composite
index could only filter one dimension at a time, i.e. spatial or
temporal, and then filtered the other dimension; when the query
ranges became larger, 1D query filtered much fewer records
than those by the ST-Hash method. In contrast, the ST-Hash
method queried all the records in both spatial and temporal
dimensions at the same time and therefore filtered out unrelated
data much more quickly.

C. The performance comparison on the spatiotemporal circle
queries

This experiment was a spatiotemporal circle query
performance comparison of the ST-Hash index and a
composite index method. Spatiotemporal circle query also had
four query cases: 0.01, 0.02, 0.04 and 0.08, which also mean
the MBR of query circle was 0.01 X0.01, 0.02X0.02, and 0.04
X 0.04, 0.08X0.08. Just like the spatiotemporal range query
comparison experiment, the time range was raised from 10
minutes to 120 minutes in each case. The experimental results
for different range queries in different scales are illustrated in
Figure 9.

1000 4
1 [GeoHasn+Time Index] Gaoiaah+Time dex

woou]

oo | I ST-Hash 0 MMsTsn wn

Rﬁﬂlus oo 1 1400+ Radius: 0.02
1] 1ms

o _ 100 yua s
£ [
= ;: .E..ooc-.
ki £ 3 ol B
g ‘*” 2]
E E 001 -

m 1 o

1«
"o <00 ‘ 338
100] 0
ol ol . ; : ; :
10 0 <0 60 120

Tirme Fl-‘ngo {min Tima Range {min)

p—] GeoHash+Time Index
-ST Hash

‘WJ_ Radius 0.04

[GacHash+ Time Incex
5T-Hash
83504 Radius: 0.08

Mg

Tirmne Cost (ms)
2

Tima Cosl {ms)

Time Range (min)

Time Rangs (min)

Figure 8. Time performance of different spatiotemporal circle queries

From the Figure 8, it is obviously that the time cost of
composite index is far greater than that of ST-Hash. By
comparing each case in Figure 7 with the corresponding case in
Figure 8, the composite index cost more time to derive the final
result; however, the time cost of ST-Hash was almost the same.
Because spatiotemporal circle query was based on
spatiotemporal range query, the time cost of ST-Hash would
not change dramatically.

D. The scalability of the ST-Hash indexing method

This experiment was carried out to evaluate the ST-Hash
scalability and demonstrated the relationship between query
time and data size. In this experiment, all of the spatiotemporal
range queries were executed with different data sizes. The data
size rose from 10 GB to 80 GB. The query ranges used were
the same as section 5.1. The experimental results for different

range queries on different data sizes were illustrated in Figure 8.

Figure 8 shows that query time has little dependence on data
size. Even when the data size was increased eight times, the
query time remained stable. This stability could be explained
by that the spatiotemporal range query was transformed into a
search in the B-tree while the time complexity of the search in
the B-tree was O (log n). Thus, these experimental results
illustrate that our proposed ST-Hash indexing method has
robust scalability over the input data size.

100

Y00~] 10G | Lengitude~Latitude: 0.01%0,01
" Il 10G | LongrudexLatiude: 0.005x0.005 204
w4 | 206
] 40G 80 4
] D e0s e
- 10 7
£« § o0
E ol 504
& =1 6
£ +] g
F x] " a0
204

=

10 20 an 0 20

Time Range (min} Time Range (min)

Longtude=Latitude: 0,04%0.04

3
&
=1
@

Longitude=Latitude: 0.020,02

83

Tirne Cost (ms)
cBEBBEHERR

ousanENEERENEERERESY

@ & 120
Time Range (min)

Time Range (min)

Figure 9. Time performance of difference input data sizes

VI. CONCLUSIONS

Management of large volume trajectory data is a
challenging task in many fields. The emerging NoSQL
database technology promises a solution to efficiently manage
these massive trajectory data, but most of current NoSQL
databases do not support the direct indexing method on
spatiotemporal data. To address this, this paper presents a novel
trajectory indexing method for accelerating the processing of
spatiotemporal queries. This method extends the widely-used
GeoHash algorithm to satisfy the requirements for high-
frequency update and common trajectory query operations. The
ST-Hash indexing solution was implemented in the MongoDB,
a typical NoSQL database. Experimental results show that the
proposed indexing method can greatly improve the query
performance. At the same time, this method exhibits robust
scalability over different input data sizes. When the size of
target data increases from 10GB to 80GB, the query time
remains steady. Future work will focus on more complex
spatiotemporal query support, and evaluate the feasibility of the
ST-Hash method in more complex scenarios, e.g. pattern
mining, traffic simulation, etc.

REFERENCES

[1] L. Wang and Q. Xu, “GPS-free localization algorithm for wireless
sensor networks,” Sensors, vol.10(6), 2010, pp.5899-926.

[2] S. van der Spek, J. van Schaick, P. de Bois, and R. de Haan, “Sensing
Human Activity: GPS Tracking,” Sensors, vol. 9(4), 2009, pp.3033-55.
[3] A. Fox, C. Eichelberger, J. Hughes, and S. Lyon, “Spatio-temporal

indexing in non-relational distributed databases,” Proc. IEEE Conf. of
Big Data, 2013.

[19]

[20

[t}

[22

—

[23

—

S. Guo, Z. Huang, H.V. Jagadish, B.C. Ooi, and Z.Zhang, “Relaxed
space bounding for moving objects: a case for the buddy tree,” Sigmod
Record, vol. 35(4), 2006, pp.24-9.

S. Ke, J. Gong, S. Li, Q. Zhu, X. Liu, and Y. Zhang, “A hybrid spatio-
temporal data indexing method for trajectory databases,” Sensors,
vol.14(7), 2014, pp.12990-3005.

D. Pfoser, C. Jensen, and Y. Theodoridis, “Novel Approaches to the
Indexing of Moving Object Trajectories,” Proc. of VLDB, pp.395-406,
2000.

Long-Van Nguyen-Dinh and F. Mokbel, “Spatio-Temporal Access
Methods: Part 2 (2003 - 2010),” Bulletin of the Technical Committee on
Data Engineering, 2010.

K.C. Kim and S.W. Yun, “MR-Tree: A Cache-Conscious Main Memory
Spatial Index Structure for Mobile GIS,” International Conference on
Web & Wireless Geographical Information Systems, 2005.

M.A. Nascimento and J. Silva, “Towards historical R-trees,” ACM
Symposium on Applied Computing, 1998.

Y. Tao and D. Papadias, “Efficient historical R-trees,” International
Conference on Scientific and Statistical Database Management, 2001.

Y. Tao and D. Papadias, “MV3R-Tree: A Spatio-Temporal Access
Method for Timestamp and Interval Queries,” Proceedings of the 27th
International Conference on Very Large Data Bases, 2001.

D. Sacharidis and V. Kantere, “On-line discovery of hot motion paths,”
International Conference on Extending Database Technology, pp.392-
403, 2008.

S. Shekhar and S. Jin, “Processing in-route nearest neighbor queries: a
comparison of alternative approaches,” Proceedings of ACM
International Symposium on Advances in Geographic Information
Systems, pp.9 — 16, 2003.

Z. Song and N.Roussopoulos, “SEB-tree: An Approach to Index
Continuously Moving Objects,” Lecture Notes in Computer Science,
2003.

Y. Zheng, L. Zhang, X. Xie, and W. Ma, “Mining interesting locations
and travel sequences from gps trajectories,” Proc. of 2009 International
World Wide Web Conf., pp. 791-800, 2009.

V.P. Chakka, V. Prasad, C. Adam, A.C. Everspaugh, and J.M. Patel,
“Indexing Large Trajectory Data Sets With SETL” Proc. Of
International Conference on Innovative Data Systems Research, 2003.

D. Zhang, P. Zhou, B. Salzberg, G. Cooperman and G. Kollios, “Close
pair queries in moving object databases,”. Proc. of the 13th Annual
ACM International Workshop on Geographic Information Systems,
2005.

S. Chen, B.C. Ooi, K.L. Tan, and M.A. Nascimento, “ST2B-tree: a self-
tunable spatio-temporal b+-tree index for moving objects,” Proc.
International Conference on Management of Data, 2008.

C. S. Jensen, D. Lin, and B. C. Ooi, “Query and Update Efficient B-Tree
Based Indexing of Moving Objects,” VLDB. pp.768-79, 2004.

S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez, “Indexing
the Positions of Continuously Moving Objects,” ACM Sigmod Record,
vol. 29(2), 2000, pp. 331-42.

Y. Tao, D. Papadias, and J.Sun, “The TPR*-Tree: An Optimized Spatio-
Temporal Access Method for Predictive Queries,” VLDB, pp.790-801,
2003.

Z. Balki and G. Horvat, “GeoHash and UUID Identifier for Multi-Agent
Systems,” Lecture Notes in Computer Science, vol.(7327), 2012,
pp-290-8.

J. Jezek and I. Kolingerova, “STCode: The Text Encoding Algorithm for
Latitude/Longitude/Time,” Connecting a Digital Europe Through
Location and Place, pp.163-77, 2014.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

